Add like
Add dislike
Add to saved papers

Improved calculation of the equilibrium magnetization of arterial blood in arterial spin labeling.

PURPOSE: To propose and assess an improved method for calculating the equilibrium magnetization of arterial blood ( M0a), used for calibration of perfusion estimates in arterial spin labeling.

METHODS: Whereas standard M0a calculation is based on dividing a proton density-weighted image by an average brain-blood partition coefficient, the proposed method exploits partial-volume data to adjust this ratio. The nominator is redefined as the magnetization of perfused tissue, and the denominator is redefined as a weighted sum of tissue-specific partition coefficients. Perfusion data were acquired with a pseudo-continuous arterial spin labeling sequence, and partial-volume data were acquired using a rapid saturation recovery sequence with the same readout module. Results from 7 healthy volunteers were analyzed and compared with the conventional method.

RESULTS: The proposed method produced improved M0a homogeneity throughout the brain in all subjects. The mean gray matter perfusion was significantly higher with the proposed method compared with the conventional method: 61.2 versus 56.3 mL/100 g/minute (+8.7%). Although to a lesser degree, the corresponding white matter values were also significantly different: 20.8 versus 22.0 mL/100 g/minute (-5.4%). The spatial and quantitative differences between the 2 methods were similar in all subjects.

CONCLUSION: Compared with the conventional approach, the proposed method produced more homogenous M0a maps, corresponding to a more accurate calibration. The proposed method also yielded significantly different perfusion values across the whole brain, and performed consistently in all subjects. The new M0a method improves quantitative perfusion estimation with arterial spin labeling, and can therefore be of considerable value in perfusion imaging applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app