Add like
Add dislike
Add to saved papers

Neighborhood Matching for Curved Domains with Application to Denoising in Diffusion MRI.

In this paper, we introduce a strategy for performing neighborhood matching on general non-Euclidean and non-flat domains. Essentially, this involves representing the domain as a graph and then extending the concept of convolution from regular grids to graphs. Acknowledging the fact that convolutions are features of local neighborhoods, neighborhood matching is carried out using the outcome of multiple convolutions at multiple scales. All these concepts are encapsulated in a sound mathematical framework, called graph framelet transforms (GFTs), which allows signals residing on non-flat domains to be decomposed according to multiple frequency subbands for rich characterization of signal patterns. We apply GFTs to the problem of denoising of diffusion MRI data, which can reside on domains defined in very different ways, such as on a shell, on multiple shells, or on a Cartesian grid. Our non-local formulation of the problem allows information of diffusion signal profiles of drastically different orientations to be borrowed for effective denoising.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app