Add like
Add dislike
Add to saved papers

Autoantibodies targeting TLR and SMAD pathways define new subgroups in systemic lupus erythematosus.

OBJECTIVES: The molecular targets of the vast majority of autoantibodies in systemic lupus erythematosus (SLE) are unknown. We set out to identify novel autoantibodies in SLE to improve diagnosis and identify subgroups of SLE individuals.

METHODS: A baculovirus-insect cell expression system was used to create an advanced protein microarray with 1543 full-length human proteins expressed with a biotin carboxyl carrier protein (BCCP) folding tag, to enrich for correctly folded proteins. Sera from a discovery cohort of UK and US SLE individuals (n = 186) and age/ethnicity matched controls (n = 188) were assayed using the microarray to identify novel autoantibodies. Autoantibodies were validated in a second validation cohort (91 SLE, 92 controls) and a confounding rheumatic disease cohort (n = 92).

RESULTS: We confirmed 68 novel proteins as autoantigens in SLE and 11 previous autoantigens in both cohorts (FDR<0.05). Using hierarchical clustering and principal component analysis, we observed four subgroups of SLE individuals associated with four corresponding clusters of functionally linked autoantigens. Two clusters of novel autoantigens revealed distinctive networks of interacting proteins: SMAD2, SMAD5 and proteins linked to TGF-β signalling; and MyD88 and proteins involved in TLR signalling, apoptosis, NF-κB regulation and lymphocyte development. The autoantibody clusters were associated with different patterns of organ involvement (arthritis, pulmonary, renal and neurological). A panel of 26 autoantibodies, which accounted for four SLE clusters, showed improved diagnostic accuracy compared to conventional antinuclear antibody and anti-dsDNA antibody assays.

CONCLUSIONS: These data suggest that the novel SLE autoantibody clusters may be of prognostic utility for predicting organ involvement in SLE patients and for stratifying SLE patients for specific therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app