Add like
Add dislike
Add to saved papers

The effects of transient receptor potential channel (TRPC) on airway smooth muscle cell isolated from asthma model mice.

This study aimed to validate whether transient receptor potential channel1 (TRPC1) and TRPC3 participate in the regulation the proliferation of airway smooth muscle cells (ASMCs) through modulating calcium ion (Ca2+ ) influx in vitro. Chronic model of murine asthma was induced and ASMCs isolated from asthmatic mice were used in this whole study. TRPC1 and TRPC3 were upregulated in asthmatic mouse ASMCs and selected for further investigation. Ca2+ concentration and the cell viability of asthmatic mouse ASMCs were significantly higher than that from non- asthma mice, however, TRPC channels blocker SKF96365 alleviated these effects. Furthermore, TRPC1 or TRPC3 overexpression markedly increased Ca2+ concentration and significantly induced the viability of ASMCs; whereas TRPC1 or TRPC3 knockdown exerted the completely conversed effects. Moreover, knockdown of TRPC1 and TRPC3 also exerted different effects on the protein expression of growth-related proteins p-p38, p-JNK, cleaved caspase-3 and Bcl-2, as well as on cell cycle. Finally, we found Ca2+ chelator EGTA or BAPTA-AM significantly diminished the effects of si-TRPC1 and si-TRPC3 on the cell viability, cell cycle, and the protein expression of p-p38, p-JNK, cleaved caspase-3, and Bcl-2 in asthmatic mouse ASMCs. Our findings demonstrated that the effects of TRPC1 and TRPC3 on the cell viability and cell cycle of ASMCs were, at least partially, through regulating Ca2+ influx.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app