Add like
Add dislike
Add to saved papers

Wnt3a Ectopic Expression Interferes Axonal Projection and Motor Neuron Positioning During the Chicken Spinal Cord Development.

The formation of dorsal-ventral axis of the spinal cord is controlled largely by dorsal signals such as Wnts (which are members of the wingless + MMTV integrants, Int family), besides ventral signals such as sonic hedgehog (Shh). Wnt3a, one of the Wnt family members, is involved in multiple cellular functions, including self-renewal, proliferation, differentiation, and motility. Here, we aim to study the mechanism of the regulation of chicken spinal cord patterning by Wnt3a. In this study, Wnt3a was ectopically expressed in the spinal cord of developing chicken embryos by in ovo electroporation. The results of immunofluorescent staining revealed that Wnt3a ectopic expression caused the abnormality of commissural axonal projection and the formation of nerve fibers was interrupted. It is worth noting that neurons in the ventricular zone, especially motor neurons, could not migrate laterally after the Wnt3a overexpression, which led to the malformation of motor column. In addition, we found that neurons could not protrude axons outwardly after overexpression of Wnt3a in the spinal cord. It was also found that Wnt3a overexpression inhibited the outgrowth of processes in culturing SH-SY5Y cells. In conclusion, we proposed that Wnt3a regulates neuronal morphology, which subsequently disrupts axonal projection and motor neuron positioning during spinal cord development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app