Add like
Add dislike
Add to saved papers

Simpson-Golabi-Behmel syndrome human adipocytes reveal a changing phenotype throughout differentiation.

The Simpson-Golabi-Behmel syndrome (SGBS) cell strain is widely considered to be a representative in vitro model of human subcutaneous white pre-adipocytes. These cells achieve a transient expression of classical brown markers, such as uncoupling protein 1, peaking at day 14 of differentiation and decreasing thereafter. Adipocyte browning process involves dynamic changes in lipid droplet (LD) dimension, in mitochondria morphology, and in the expression of brown-specific marker genes. This study analyzes SGBS transient phenotypic transformation by quantifying the heterogeneity of LDs, mitochondrial dynamics, and a panel of genes involved in adipocyte differentiation and browning. LDs at 21 days of differentiation were larger than in the previous stages, without any change in the number per cell. The expression of genes such as peroxisome peroxisome proliferator-activated receptor γ, leptin, and lipase E significantly raised from 0 to 21 days. Adiponectin was significantly upregulated at 14 days of differentiation. Brown-specific marker PR domain containing 16 was highly expressed at D0. The variability of mitochondrial shape and interconnectivity reflects differences in the relative rates of fusion and fission, resulting in a significant shift from a networked shape at D7 to a fragmented and swollen one at D14 and D21. The transient phenotype experienced by this cellular model should be considered whether used in studies involving the stimulation of adipocyte browning and could be an interesting human model to further elucidate the browning process in the absence of any stimulation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app