Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Physiologically based pharmacokinetic (PBPK) modeling of human lactational transfer of methylmercury in China.

Methylmercury can readily cross the human placental barrier and the blood-brain barrier and cause damage to the vulnerable developing brains of the fetus and infants. Most of the previous studies on the maternal transfer of methylmercury to the next generation have focused on the prenatal period. In this study, human physiologically based pharmacokinetic (PBPK) models of methylmercury were established for breastfeeding mothers and suckling infants based on the existing model prototypes of previous studies. Relevant parameters of the models were modified, and the validation was conducted based on measured data in North China. The models could effectively describe the human lactational transfer of methylmercury, including the time-dependent methylmercury levels in different tissues and organs of the breastfeeding mothers and suckling infants. The results indicated that 77.2% and 14.9% of methylmercury were excreted via hair and breast milk, respectively, from breastfeeding mothers during the first year after delivery. Meanwhile, 79.2% was excreted from the suckling infants during the first year after delivery via hair. Lactational transfer of methylmercury was considered an important pathway of methylmercury exposure for the breastfeeding infants, which accounted for approximately 80% of the accumulated adverse impacts at the early stages of human development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app