Add like
Add dislike
Add to saved papers

Self-assembling behavior of pyrimidine analogues: Unveiling the factors behind morphological diversity.

Studying the self-assembly of uracil derivatives has great importance in biochemistry and nanotechnology. Now, in order to architect unique and interesting nucleobase nanostructures, herein, we report a simple, yet robust uracil moiety based platform which is potentially capable to self-assemble into fibrils. The system is validated using eight uracil moiety derivatives and the effect is examined via fluorescence lifetime imaging microscopy (FLIM), field emission scanning electron microscopy (FESEM), steady state DCM fluorescence and fluorescence correlation spectroscopy (FCS). FLIM and FESEM give qualitative information regarding the fibril formation of different morphologies including string, rod, flower, needles etc. Steady state DCM fluorescence and FCS establish a quantitative estimation of the extent of fibril formation. The involvement of hydrogen bonding interaction between NH and CO groups in the fibrillar growth of 5-IU is evoked from the crystallographic study. Again, the key role of different functional groups behind the formation of fibrillar network is investigated through blocking the COO- group of orotic acid with lanthanides. Finally, esterification and N,N'-dimethylation exquisitely explore the role and priority of different groups in the fibril formation of pyrimidine analogues. The results may be useful for understanding the processes of self-assembly of the uracil derivatives and the rationalized design of the uracil based supramolecular structures with specific properties.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app