Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Oxidation of steroid estrogens by peroxymonosulfate (PMS) and effect of bromide and chloride ions: Kinetics, products, and modeling.

Water Research 2018 July 2
Recently, in situ chemical oxidation (ISCO) using peroxymonosulfate (PMS) for environmental decontamination has received increasing interest. In this study, oxidation kinetics and products of four steroid estrogens (i.e., estrone, 17β-estradiol, estriol, and 17α-ethinylestradiol) by PMS under various conditions were investigated. PMS could fairly degrade steroid estrogens over the pH range of 7-10, and the degradation rate increased with the increase of solution pH. This pH-dependence was well described by parallel reactions between individual acid-base species of steroid estrogens (E and E- ) and PMS (HSO5 - and SO5 2- ), where specific second-order rate constants for E- with HSO5 - and SO5 2- were in the range of 2.11-5.58 M-1 s-1 and 0.77-1.25 M-1 s-1 , respectively. Identification of oxidation products by liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometer showed that PMS readily oxidized the phenolic group of steroid estrogens, leading to the generation of hydroxylated and ring-opening products. The presence of bromide and chloride ions (Br- and Cl- ) at environmentally relevant levels could greatly accelerate the degradation of steroid estrogens by PMS with the formation of halogenated aromatic products. This effect was quantitatively estimated by a kinetic model, where the formation of free bromine and chorine and their rapid electrophilic substitution with steroid estrogens were taken into consideration. Eco-toxicity of transformation products of 17α-ethinylestradiol by PMS treatment in the absence and presence of bromide and chloride was estimated by quantitative structure-activity relationship analysis using ECOSAR. These findings advance the understanding of ISCO using PMS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app