Add like
Add dislike
Add to saved papers

Effect of applied magnetic fields on motility and magnetotaxis in the uncultured magnetotactic multicellular prokaryote 'Candidatus Magnetoglobus multicellularis'.

Magnetotactic bacteria are found in the chemocline of aquatic environments worldwide. They produce nanoparticles of magnetic minerals arranged in chains in the cytoplasm, which enable these microorganisms to align to magnetic fields while swimming propelled by flagella. Magnetotactic bacteria are diverse phylogenetically and morphologically, including cocci, rods, vibria, spirilla and also multicellular forms, known as magnetotactic multicellular prokaryotes (MMPs). We used video-microscopy to study the motility of the uncultured MMP 'Candidatus Magnetoglobus multicellularis' under applied magnetic fields ranging from 0.9 to 32 Oersted (Oe). The bidimensional projections of the tridimensional trajectories where interpreted as plane projections of cylindrical helices and fitted as sinusoidal curves. The results showed that 'Ca. M. multicellularis' do not orient efficiently to low magnetic fields, reaching an efficiency of about 0.65 at 0.9-1.5 Oe, which are four to six times the local magnetic field. Good efficiency (0.95) is accomplished for magnetic fields ≥10 Oe. For comparison, unicellular magnetotactic microorganisms reach such efficiency at the local magnetic field. Considering that the magnetic moment of 'Ca. M. multicellularis' is sufficient for efficient alignment at the Earth's magnetic field, we suggest that misalignments are due to flagella movements, which could be driven by photo-, chemo- and/or other types of taxis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app