Add like
Add dislike
Add to saved papers

Differential transcriptome analysis of zebrafish (Danio rerio) larvae challenged by Vibrio parahaemolyticus.

Zebrafish embryo and larva represent a useful in vivo model for identification of host innate immune responses to bacterial infection. Vibrio parahaemolyticus is a typical zoonotic pathogen worldwide that causes acute gastroenteritis in humans and vibriosis in fishes. However, the mechanism of the innate immune response in the zebrafish larvae infected by V. parahaemolyticus has not been clear. We analysed the transcriptomic profile of 3 days post-fertilization (dpf) zebrafish larvae immersed in V. parahaemolyticus 13 (Vp13) strain suspension for 2 hr. A total of 602 differentially expressed genes (DEGs) were identified in the infection group, of which 175 (29.07%) genes were upregulated and 427 (70.93%) genes were downregulated. These altered genes encoded complement and coagulation cascades, chemokine, TNF signalling pathway, NF-κB signalling pathway and JAK-STAT signalling pathway. Some significant DEGs, such as mmp13, cxcr4a, ccl20, hsp70, gngt, serpina1l, il8, cofilin and il11, were subjected to quantitative gene expression analysis, and the results were consistent with those of the transcriptome profile. These results clearly demonstrated that exposure to V. parahaemolyticus for 2 hr could activate innate immune response in 3dpf larvae by altered expression of downstream signalling pathway genes of pattern recognition receptors (PRRs). Our results also provide a useful reference for future analysis of signal transduction pathways and pathogenesis mechanisms underlying the systemic innate immune response to the external bacteria of V. parahaemolyticus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app