Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

HMGB1 mediates HAdV-7 infection-induced pulmonary inflammation in mice.

Human adenovirus (HAdV) is a common respiratory pathogen in children, with no safe and effective treatment currently available. HAdV type 7 (HAdV-7), in particular, causes severe pediatric pneumonia with a high incidence of sequelae and mortality. Clinical data and animal experiments suggest that HAdV-7-induced pneumonia promotes cell necrosis, releasing a large number of inflammatory mediators. In recent years, the high mobility group box-1 (HMGB1) protein, released by necrotic cells, has been shown to play important roles in several viral infections. Here, we show that HMGB1 levels gradually increased in the media supernatants of HAdV-7 infected A549 cells, starting at 12 h post-infection. In vivo, HMGB1 levels in BALF and mRNA levels in lung tissues significantly increased after 3 days of HAdV-7 infection. Among the HMGB1 receptor genes, TLR-4 and TLR-9 expression increased, and so did the receptor for advanced glycation end-products (RAGE). Interestingly, NF-κB levels also increased concomitantly. Conversely, when HMGB1 was blocked, the pathological scores from lung tissues, inflammatory mediator levels, and viral copy number all were reduced significantly; in addition, HMGB1-related signaling pathway molecules, namely TLR-4, TLR-9, RAGE, and NF-κB were also reduced. We conclude that HMGB1 promotes HAdV-7 replication and signals through TLR-4, TLR-9, and RAGE receptors to activate NF-κB, stimulating the release of inflammatory mediators and contributing to adenoviral pathology. Thus, HMGB1 could be used as a therapeutic target in HAdV-7 infection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app