Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Synergistic approaches unraveling regulation and aggregation of intrinsically disordered β-amyloids implicated in Alzheimer's disease.

Alzheimer's disease is a severe brain illness that causes vast numbers of nerve cells in the brain to die, driven by the production and deposition of amyloid beta (Aβ) peptides. Intrinsically disordered proteins (IDPs) generally lack stable structures and are abundant in nature. Aβ peptide is a well-known IDP with a wide range of oligomeric forms. Dysfunctions in Aβ lead to oligomerization, formation of fibrils, and neurodegenerative disorders or other forms of dementia. In this study, we used replica exchange molecular dynamics (REMD) to elucidate the roles of different osmolytes, particularly urea and trimethylamine N-oxide (TMAO), to study shifts in IDP populations. REMD samples the conformational space efficiently and at physiologically relevant temperatures, compared to conventional molecular dynamics that sample at a constant temperature. Urea is known to minimize the aggregation process, while TMAO is beneficial for its stabilizing action. The two osmolytes displayed characteristic effects on Aβ peptides and resulted in progressive modulation of conformations. The present study underlines the hypothesis of "modulation of conformational ensembles" to explain the regulation and aggregation of IDPs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app