Add like
Add dislike
Add to saved papers

Mitigation of harmful indoor organic vapors using plug-flow unit coated with 2D g-C 3 N 4 and metallic Cu dual-incorporated 1D titania heterostructure.

Chemosphere 2018 July
Herein, a plug-flow reactor coated with one-dimensional (1D) TiO2 nanotube (TNT) heterostructures incorporated with g-C3 N4 (CN) and metallic Cu (CN/Cu/TNT) nanocomposite and irradiated by a daylight lamp was newly applied for the mitigation of harmful indoor organic vapors. The CN/Cu/TNT catalyst showed high mitigation efficiency for all target pollutants, followed by Cu-incorporated TNT (Cu/TNT), CN-incorporated TNT (CN/TNT), TNT, and TiO2 , in that order. The order of their photocatalytic activities agrees with that of the electron‒hole separation rates determined from their photoluminescence emission spectra. The mitigation efficiency of the CN/Cu/TNT catalyst increased as the CN-to-Cu/TNT percentage was increased from 1% to 10%, but subsequently decreased as the CN-to-Cu/TNT percentage increased to 20%. The mitigation efficiencies of the CN/Cu/TNT catalyst decreased with increasing relative humidity, feed pollutant concentrations, and airstream flow rates. However, in most cases, the reaction rates of the target compounds increased when the feed concentration was increased from 1 to 5 ppm. The mineralization rates of all target pollutants were lower than the corresponding photocatalytic mitigation rates, which could be ascribed to the production of CO and organic intermediates observed during the photocatalysis of the target pollutants. Nevertheless, the intermediates formed during the photocatalytic mitigation process would not cause significant adverse health effects to building occupants, because their concentrations were far below their exposure or threshold limit values. A probable mechanism for the photocatalytic mitigation of the organic vapors by the CN/Cu/TNT catalyst under daylight illumination was also proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app