Add like
Add dislike
Add to saved papers

A ternary complex model of Sirtuin4-NAD + -Glutamate dehydrogenase.

Sirtuin4 (Sirt4) is one of the mammalian homologues of Silent information regulator 2 (Sir2), which promotes the longevity of yeast, C. elegans, fruit flies and mice. Sirt4 is localized in the mitochondria, where it contributes to preventing the development of cancers and ischemic heart disease through regulating energy metabolism. The ADP-ribosylation of glutamate dehydrogenase (GDH), which is catalyzed by Sirt4, downregulates the TCA cycle. However, this reaction mechanism is obscure, because the structure of Sirt4 is unknown. We here constructed structural models of Sirt4 by homology modeling and threading, and docked nicotinamide adenine dinucleotide+ (NAD+ ) to Sirt4. In addition, a partial GDH structure was docked to the Sirt4-NAD+ complex model. In the ternary complex model of Sirt4-NAD+ -GDH, the acetylated lysine 171 of GDH is located close to NAD+ . This suggests a possible mechanism underlying the ADP-ribosylation at cysteine 172, which may occur through a transient intermediate with ADP-ribosylation at the acetylated lysine 171. These results may be useful in designing drugs for the treatment of cancers and ischemic heart disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app