Add like
Add dislike
Add to saved papers

Assessment of peanut allergen Ara h1 in processed foods using a SWCNTs-based nanobiosensor.

The goals of this research were to develop a rapid single-walled carbon nanotube (SWCNT)-based biosensor and to employ it to commercial food products for Ara h1 detection. The SWCNT-based biosensor was fabricated with SWCNTs immobilized with antibody (pAb) through hybridization of 1-pyrenebutanoic acid succinimidyl ester (1-PBASE) as a linker. The resistance difference (ΔR) was calculated by measuring linear sweep voltammetry (LSV) using a potentiostat. Resistance values increased as the concentration of Ara h1 increased over the range of 1 to 105  ng/L. The specific binding of anti-Ara h1 pAb to antigen including Ara h1 was confirmed by both indirect ELISA kit and biosensor assay. The biosensor was exposed to extracts prepared from commercial processed food containing peanuts, or no peanuts, and could successfully distinguish the peanut containing foods. In addition, the application of present biosensor approach documented the precise detection of Ara h1 concentrations in commercially available peanut containing foods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app