JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular cloning, characterization, and expression profiles of the Sox3 gene in Chinese loach Paramisgurnus dabryanus.

A number of studies have established that in vertebrates, Sox3 is involved in a wide range of developmental processes, including sex differentiation and neurogenesis. However, the exact functions of the Sox3 gene have not been documented so far in teleosts. Here, we cloned the full length cDNA of Sox3 from the teleost fish, Paramisgurnus dabryanus, which we designated PdSox3. Sequence analysis revealed that PdSox3 encodes a hydrophilic protein, and shares high homology with Sox3 in other species, ranging from mammals to fishes. Quantitative real-time reverse transcription PCR, and in situ hybridization showed that PdSox3 is consistently expressed during embryogenesis, mainly localized in the developing central nervous system. Tissue distribution analyses revealed that PdSox3 is abundant in the adult brain, especially in particle cell layer. Furthermore, PdSox3 expression was higher in gonads, in primary spermatocyte cells, primary oocytes, and previtellogenic oocyte cells. All of these results suggest that PdSox3 plays an important role in early embryonic development, in particular the formation and development of the nervous system, and gonad development, similarly to other vertebrates. This is the first report describing Sox3 gene expression from this species, and the results are necessary to provide fundamental information on both the functional and evolutionary role of Sox3 across different species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app