Add like
Add dislike
Add to saved papers

Phenotypic and functional alterations of myeloid-derived suppressor cells during the disease course of multiple sclerosis.

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system involving dysregulated encephalitogenic T cells. Myeloid-derived suppressor cells (MDSCs) have been recognized for their important function in regulating T-cell responses. Recent studies have indicated a role for MDSCs in autoimmune diseases, but their significance in MS is not clear. Here, we assessed the frequencies of CD14+ HLA-DRlow monocytic MDSCs (Mo-MDSCs) and CD33+ CD15+ CD11b+ HLA-DRlow granulocytic MDSCs (Gr-MDSCs) and investigated phenotypic and functional differences of Mo-MDSCs at different clinical stages of MS and in healthy subjects (HC). Increased frequencies of Mo-MDSCs (P < 0.05) and Gr-MDSCs (P < 0.05) were observed in relapsing-remitting MS patients during relapse (RRMS-relapse) compared to stable RRMS (RRMS-rem). Secondary progressive MS (SPMS) patients displayed a decreased frequency of Mo-MDSCs and Gr-MDSCs compared to HC (P < 0.05). Mo-MDSCs within RRMS patients expressed significantly higher cell surface protein levels of CD86 and CD163 compared to SPMS patients. Mo-MDSCs within SPMS exhibited decreased mRNA expression of interleukin-10 and heme oxygenase 1 compared to RRMS and HC. Analysis of T-cell regulatory function of Mo-MDSCs demonstrated T-cell suppressive capacity in RRMS and HCs, while Mo-MDSCs of SPMS promoted autologous T-cell proliferation, which aligned with a differential cytokine profile compared to RRMS and HCs. This study is the first to show phenotypic and functional shifts of MDSCs between clinical stages of MS, suggesting a role for MDSCs as a therapeutic target to prevent MS disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app