Add like
Add dislike
Add to saved papers

Effect of electro-acupuncture on the BDNF-TrkB pathway in the spinal cord of CCI rats.

Microglia, which comprise a sensor for pathological events in the central nervous system, may be triggered by nerve injury and transformed from a quiescent state into an activated state; ionised calcium binding adaptor molecule 1 (Iba1) is a sensitive marker associated with activated microglia. Accumulated evidence suggests that spinal activated microglia and the brain-derived neurotrophic factor (BDNF)-tyrosine kinase receptor B (TrkB) signalling pathway play major roles in the production and development of neuropathic pain. Electro-acupuncture (EA) has a positive effect on relieving chronic neuropathic pain; however, the underlying mechanisms remain unclear. To determine the significance of EA in the treatment of neuropathic pain mediated by activated microglia and the BDNF-TrkB signalling pathway in the spinal cord, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values were recorded to assess hyperalgesia and allodynia. In addition, the amount of activated microglia and BDNF were assessed via immunofluorescence. Iba1, BDNF and TrkB mRNA expression levels were examined using qPCR; the protein levels of BDNF, p-TrkB and TrkB in the spinal cord were analysed via western blotting. The present study demonstrated that EA treatment increased the MWT and TWL values. EA significantly inhibited the proportion of activated microglia and BDNF expression in the spinal cord after chronic constrictive injury (CCI). Furthermore, EA decreased the expression of BDNF and TrkB at both the mRNA and protein levels in the spinal cord of CCI rats. These findings suggest that the analgesic effect of EA may be achieved by inhibiting the activation of spinal microglia and subsequently blocking the BDNF-TrkB signalling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app