Add like
Add dislike
Add to saved papers

Experimental Nanopulse Ablation of Multiple Membrane Parasite on Ex Vivo Hydatid Cyst.

The impact of ultrashort nanopulse on cellular membrane is of biological significance and thus has been studied intensively. Different from cell study, this ex vivo study aims to investigate the biological effects of nanosecond pulsed electric field (nsPEF) on an independent multimembrane parasite, human hydatid cyst, to observe the unique influence of nanopulse on macromembrane structure, permeabilization, and biochemistry. The 300 ns nsPEF was delivered on an experimental model of single human hydatid cyst ex vivo with eight different parameters. Then pathological changes during 7 days of 48 parasite cysts were followed up after nsPEF. The laminated layer, the germinal layer, the protoscolex, and cyst fluid were evaluated by the morphological, pathological, and biochemical measurements. The parameter screening found that nsPEF can damage hydatid cyst effectively when the field strength is higher than 14 kV/cm. When nsPEF is higher than 29 kV/cm, nsPEF destroy hydatid cyst completely by collapsing the germinal layer, destructing protoscolices, and exhausting the nutrition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app