Add like
Add dislike
Add to saved papers

Feasibility of Computational Fluid Dynamics for Evaluating the Intraventricular Hemodynamics in Single Right Ventricle Based on Echocardiographic Images.

This study introduced a combined computational fluid dynamics (CFD) and echocardiography methodology to simulate blood flow in the single right ventricle (SRV) and normal ventricles to study the intraventricular flow. Derived from echocardiographic image loops, CFD-based three-dimensional (3D) flow models of normal subject's left ventricle (LV) and right ventricle (RV) and SRV with and without heart failure at three characteristic diastolic statuses were reconstructed. The CFD derived morphological and functional measurements in normal ventricles and the SRV were validated with echocardiography. The vortex in the normal ventricles and the SRV were studied. The morphological and functional measurements derived from CFD modeling and echocardiography were comparable, and both methods demonstrated the larger volume and higher spherical index in the SRV, in particular the SRV with heart failure. All the vortices in the SRV were smaller than those in the normal control subject's LV and RV, notably with heart failure. Unlike normal LV and RV, no vortex ring was observed in the SRV. Echocardiography-based CFD demonstrated the feasibility of quantifying ventricular morphology and function; in addition, CFD can detect the abnormal flow pattern (smaller or obliterated vortices) in the SRV when compared with normal ventricles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app