Add like
Add dislike
Add to saved papers

Mesoproterozoic juvenile crust in microcontinents of the Central Asian Orogenic Belt: evidence from oxygen and hafnium isotopes in zircon.

Scientific Reports 2018 March 23
We report in situ O and Hf isotope data of zircon grains from coeval Mesoproterozoic (ca. 1.4 Ga) igneous metamafic (amphibolite) and granitic rocks of the Chinese Central Tianshan microcontinent (CTM) in the southern Central Asian Orogenic Belt (CAOB). Zircon grains from amphibolite have mantle-like δ18 OVSMOW values of 4.7-5.6‰ and juvenile Hf isotopic compositions (εHf (t) = 8.4-15.3; TDMC  = 1.57-1.22 Ga), whereas those from granitic rocks have δ18 OVSMOW values of 5.6-7.0‰ and evolved Hf isotopic compositions (εHf (t) = -1.0-8.2; TDMC  = 2.09-1.62 Ga). Zircon O-Hf isotopic compositions of the metamafic and granitic rocks provide evidence for Mesoproterozoic (ca. 1.4 Ga) crustal growth and a substantial Palaeoproterozoic supracrustal component in the CTM. These findings and previous studies, reporting ca. 1.4 Ga magmatic rocks from other microcontinents of the CAOB, suggest that a large belt of Mesoproterozoic (ca. 1.4 Ga) juvenile continental crust formed in a continental terrane, fragments of which now occur over a distance of more than a thousand kilometres in the southern CAOB.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app