Add like
Add dislike
Add to saved papers

Nanobodies targeting cortactin proline rich, helical and actin binding regions downregulate invadopodium formation and matrix degradation in SCC-61 cancer cells.

Cortactin is a multidomain actin binding protein that activates Arp2/3 mediated branched actin polymerization. This is essential for the formation of protrusive structures during cancer cell invasion. Invadopodia are cancer cell-specific membrane protrusions, specialized at extracellular matrix degradation and essential for invasion and tumor metastasis. Given the unequivocal role of cortactin at every stage of invadopodium formation, it is considered an invadopodium marker and potential drug target. We used cortactin nanobodies to examine the role of cortactin domain-specific function at endogenous protein level. Two cortactin nanobodies target the central region of cortactin with high specificity. One nanobody interacts with the actin binding repeats whereas the other targets the proline rich region and was found to reduce EGF-induced cortactin phosphorylation. After intracellular expression as an intrabody, they are both capable of tracing their target in the complex environment of the cytoplasm, and disturb cortactin functions during invadopodia formation and extracellular matrix degradation. These data illustrate the use of nanobodies as a research tool to dissect the role of cortactin in cancer cell motility. This information can contribute to the development of novel therapeutics for tumor cell migration and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app