Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

The MEK5/ERK5 mitogen-activated protein kinase cascade is an effector pathway of bone-sustaining bisphosphonates that regulates osteogenic differentiation and mineralization.

Bone 2018 June
Bisphosphonates play an important role in the treatment of metabolic bone diseases such as osteoporosis. In addition to their anti-resorptive activity by triggering osteoclast apoptosis, nitrogen-containing bisphosphonates (N-BP) may also influence osteogenic differentiation, which might rely on their capacity to inhibit the mevalonate pathway. In vascular endothelial cells inhibition of this pathway by cholesterol-lowering statins activates the MEK5/ERK5 mitogen-activated protein kinase cascade, which plays an important role in cellular differentiation, apoptosis or inflammatory processes. Here we evaluated whether N-BP may also target the MEK5/ERK5 pathway and analysed the consequences of ERK5 activation on osteogenic differentiation. We show that N-BP dose-dependently activate ERK5 in primary human endothelial cells and osteoblasts. The mechanism likely involves farnesyl pyrophosphate synthase inhibition and subsequent functional inhibition of the small GTPase Cdc42 since siRNA-mediated knockdown of both genes could reproduce N-BP-induced ERK5 activation. ERK5 activation resulted in regulation of several bone-relevant genes and was required for calcification and osteogenic differentiation of bone marrow-derived mesenchymal stems cells as evident by the lack of alkaline phosphatase induction and alizarin-red S staining observed upon ERK5 knockdown or upon differentiation initiation in presence of a pharmacological ERK5 inhibitor. Our data provide evidence that N-BP activate the MEK5/ERK5 cascade and reveal an essential role of ERK5 in osteogenic differentiation and mineralization of skeletal precursors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app