COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Quantitation of myosin regulatory light chain phosphorylation in biological samples with multiple reaction monitoring mass spectrometry.

The 20-kDa regulatory light chain of myosin II plays an important role in regulating smooth muscle contractile force. LC20 is phosphorylated canonically by myosin light chain kinase in a Ca2+ /calmodulin-dependent manner at S19. The diphosphorylation of LC20 at T18 and S19 has been observed in smooth muscle tissues. Given that the phosphorylation of LC20 is positively correlated with tension development, the molar stoichiometry of LC20 phosphorylation is commonly profiled as a measure of smooth muscle contractility. Herein, we describe a novel multiple reaction monitoring (MRM)-mass spectrometry (MS) approach for the quantification of LC20 phosphorylation at T18 and S19. Unique precursor as well as y- and b-ion transitions were identified for unphosphorylated LC20-(TS), monophosphorylated LC20-(TpS) and diphosphorylated LC20-(pTpS) peptides. The MRM-MS assay could accurately define molar phosphorylation stoichiometries of S19 and T18 over a broad range (i.e., 0-2 mol P/mol LC20). Correlations of the results for two quantification techniques indicate that the MRM-MS assay performs equally to Phos-tag SDS-PAGE for the determination of LC20 phosphorylation stoichiometry in arterial tissue samples. The MRM-MS technique provides a robust alternative to antibody-based detection systems for the quantification of LC20 phosphorylation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app