Add like
Add dislike
Add to saved papers

Bcl-2/E1B-19KD-Interacting Protein 3/Light Chain 3 Interaction Induces Mitophagy in Spinal Cord Injury in Rats Both In Vivo and In Vitro.

Journal of Neurotrauma 2018 September 16
Autophagy and mitophagy have been shown to occur in spinal cord injury (SCI). Bcl-2/E1B-19KD-interacting protein 3 (BNIP3) and its homologue, NIX, have been implicated in the regulation of mitophagy. The aim of this work was to characterize the mechanisms and role of BNIP3 in SCI-associated mitophagy. Our data showed that BNIP3, targeted to mitochondria, interacted with microtubule-associated protein 1A/1B-light chain 3 (LC3), which is targeted to autophagosomes, thus forming a mitochondria-BNIP3-LC3-autophagosome complex and resulting in mitophagy. Downregulation of BNIP3 by RNA interference strengthened the mitochondrial function and decreased cell death in spinal cord neurons under hypoxia. Particularly, BNIP3 knockdown significantly improved neurological recovery and the number of neuronal nuclei-positive cells post-SCI in rats. The present study demonstrated that BNIP3 interacts with LC3 to induce mitophagy, whereas its inhibition provided protective neuronal effects in SCI rat models both in vivo and in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app