Add like
Add dislike
Add to saved papers

Ginsenoside Rg3 stereoisomers differentially inhibit vascular smooth muscle cell proliferation and migration in diabetic atherosclerosis.

Ginsenoside 20(R/S)-Rg3, as a natural peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has been reported to exhibit differential biological effects. It is of great interest to understand the stereochemical selectivity of 20(R/S)-Rg3 and explore whether differential PPARγ activation by Rg3 stereoisomers, if it exists, could lead to differential physiological outcome and therapeutic effects in diabetic atherosclerosis. Here, we investigated the binding modes of 20(R/S)-Rg3 stereoisomers in the PPARγ ligand-binding domain (PPARγ-LBD) using molecular modelling and their effects on smooth muscle cell proliferation and migration induced by advanced glycation end products (AGEs). The results revealed that 20(S)-Rg3 exhibited stronger antiproliferative and antimigratory effects due to stronger PPARγ activation. To validate the in vitro results, we used a mice model with diabetic atherosclerosis and obtained that 20(S)-Rg3 markedly reduced the plaque size secondary to reducing the proliferation and migration of VSMCs, while the plaques were more stable due to improvements in other plaque compositions. The results shed light on the structural difference between Rg3 stereoisomers that can lead to significant differential physiological outcome, and the (S)-isomer seems to be the more potent isomer to be developed as a promising drug for diabetic atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app