JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A combination of lipidomics, MS imaging, and PET scan imaging reveals differences in cerebral activity in rat pups according to the lipid quality of infant formulas.

We evaluated the effect of adding docosahexaenoic:arachidonic acids (3:2) (DHA+ARA) to 2 representative commercial infant formulas on brain activity and brain and eye lipids in an artificially reared rat pup model. The formula lipid background was either a pure plant oil blend, or dairy fat with a plant oil blend (1:1). Results at weaning were compared to breast milk-fed pups. Brain functional activity was determined by positron emission tomography scan imaging, the brain and eye fatty acid and lipid composition by targeted and untargeted lipidomics, and DHA brain regional location by mass-spectrometry imaging. The brain functional activity was normalized to controls with DHA+ARA added to the formulas. DHA in both brain and eyes was influenced by formula intake, but more than two-thirds of tissue DHA-glycerolipids remained insensitive to the dietary challenge. However, the DHA lipidome correlated better with brain function than sole DHA content ( r = 0.70 vs. r = 0.48; P < 0.05). Brain DHA regional distribution was more affected by the formula lipid background than the provision of PUFAs. Adding DHA+ARA to formulas alters the DHA content and lipidome of nervous tissue in the neonate, making it closer to dam milk-fed controls, and normalizes brain functional activity.-Aidoud, N., Delplanque, B., Baudry, C., Garcia, C., Moyon, A., Balasse, L., Guillet, B., Antona, C., Darmaun, D., Fraser, K., Ndiaye, S., Leruyet, P., Martin, J.-C. A combination of lipidomics, MS imaging, and PET scan imaging reveals differences in cerebral activity in rat pups according to the lipid quality of infant formulas.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app