Add like
Add dislike
Add to saved papers

Dynamics of a network fluid within the liquid-gas coexistence region.

Soft Matter 2018 April 5
Low-density networks of molecules or colloids are formed at low temperatures when the interparticle interactions are valence limited. Prototypical examples are networks of patchy particles, where the limited valence results from highly directional pairwise interactions. We combine extensive Langevin simulations and Wertheim's theory of association to study these networks. We find a scale-free (relaxation) dynamics within the liquid-gas coexistence region, which differs from that usually observed for isotropic particles. While for isotropic particles the relaxation dynamics is driven by surface tension (coarsening), when the valence is limited, the slow relaxation proceeds through the formation of an intermediate non-equilibrium gel via a geometrical percolation transition in the Random Percolation universality class. We show that the slow dynamics is universal, being also observed outside the coexistence region at low temperatures in the single phase region.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app