Add like
Add dislike
Add to saved papers

Detection of Chromothripsis in Plants.

Chromothripsis, or chromosome shattering, occurs after chromosomes missegregate, are pulverized and subsequently repaired erroneously, leading to highly complex structural rearrangements. In plants, chromothripsis has been observed as a result of mitotic malfunction connected with the incomplete loss of haploid inducer chromosomes during uniparental genome elimination. Uniparental genome elimination, a process that results in haploid induction, is a phenomenon that typically results in the loss of an entire parental chromosome set in early embryos, resulting in haploid plants. In Arabidopsis thaliana, genome elimination can be achieved via the manipulation of the centromere-specific histone H3 variant, CENH3. Genomic characterization of F1 progeny resulting from CENH3-mediated genome elimination crosses in Arabidopsis revealed haploids (~39%), diploids (~25%), and aneuploids (~37%). Within the aneuploid class, ~11% show evidence for chromothripsis. Here, we present a protocol to identify Arabidopsis aneuploids that have inherited chromothriptic chromosomes during genome elimination crosses and describe in detail how to perform in silico reconstructions for individuals with chromothripsis using the somatic mutation finder (SMuFin) tool.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app