Add like
Add dislike
Add to saved papers

Template-based methodology for the simulation of intracorneal segment ring implantation in human corneas.

Keratoconus is an idiopathic, non-inflammatory and degenerative corneal disease characterised by a loss of the organisation in the corneal collagen fibrils. As a result, keratoconic corneas present a localised thinning and conical protrusion with irregular astigmatism and high myopia that worsen visual acuity. Intracorneal ring segments (ICRSs) are used in clinic to regularise the corneal surface and to prevent the disease from progressing. Unfortunately, the post-surgical effect of the ICRS is not explicitly accounted beforehand. Traditional treatments rely on population-based nomograms and the experience of the surgeon. In this vein, in silico models could be a clinical aid tool for clinicians to plan the intervention, or to test the post-surgical impact of different clinical scenarios. A semi-automatic computational methodology is presented in order to simulate the ICRS surgical operation and to predict the post-surgical optical outcomes. For the sake of simplicity, circular cross section rings, average corneas and an isotropic hyperelastic material are used. To determine whether the model behaves physiologically and to carry out a sensitivity analysis, a [Formula: see text] full-factorial analysis is carried out. In particular, how the stromal depth insertion, horizontal distance of ring insertion (hDRI) and diameter of the ring's cross section ([Formula: see text]) are impacting in the spherical and cylindrical power of the cornea is analysed. Afterwards, the kinematics, mechanics and optics of keratoconic corneas after the ICRS insertion are analysed. Based on the parametric study, we can conclude that our model follows clinical trends previously reported. In particular and although there is an improvement in defocus, all corneas presented a change in their optical aberrations. The stromal depth insertion is the parameter that affects the corneal optics the most, whereas hDRI and [Formula: see text] are less important. Not only that, but it is almost impossible to achieve an optimal trade-off between spherical and cylindrical correction. Regarding the mechanical behaviour, inserting the rings at 65% depth or above will cause the cornea to slightly bend. This abnormal stress distribution greatly distorts the corneal optics and, more importantly, could be the cause of clinical problems such as corneal extrusion. Not only that, but our model also supports that rings are acting as restraint elements which relax the stresses of the corneal stroma in the cone of the disease. However, depending on the exact spatial location of the keratoconus, the insertion of rings could promote its evolution instead of preventing it. ICRS inserted deeper will prevent keratoconus in the posterior stroma from growing (relaxation of posterior surface), but will promote its growing if they are located in the anterior surface (increment of stress). In conclusion, the methodology proposed is suitable for simulating long-term mechanical and optical effects of ICRS insertion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app