Add like
Add dislike
Add to saved papers

Penalized Maximum Likelihood Angular Super-Resolution Method for Scanning Radar Forward-Looking Imaging.

Sensors 2018 March 20
Deconvolution provides an efficient technology to implement angular super-resolution for scanning radar forward-looking imaging. However, deconvolution is an ill-posed problem, of which the solution is not only sensitive to noise, but also would be easily deteriorate by the noise amplification when excessive iterations are conducted. In this paper, a penalized maximum likelihood angular super-resolution method is proposed to tackle these problems. Firstly, a new likelihood function is deduced by separately considering the noise in I and Q channels to enhance the accuracy of the noise modeling for radar imaging system. Afterwards, to conquer the noise amplification and maintain the resolving ability of the proposed method, a joint square-Laplace penalty is particularly formulated by making use of the outlier sensitivity property of square constraint as well as the sparse expression ability of Laplace distribution. Finally, in order to facilitate the engineering application of the proposed method, an accelerated iterative solution strategy is adopted to solve the obtained convex optimal problem. Experiments based on both synthetic data and real data demonstrate the effectiveness and superior performance of the proposed method.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app