Add like
Add dislike
Add to saved papers

Investigation on the Stability of Derivative Melam from Melamine Pyrolysis under High Pressure.

Nanomaterials 2018 March 19
Although various kinds of carbon nitride precursors have been proposed, s-triazine-based structures are hardly reported because of their unfavorable energy, higher than that of heptazine-based ones. In this study, we investigate the thermal stability of s-triazine-based melam processed at a high pressure of 5 GPa and a temperature of 400-700 °C and complete the analyses of the composition and structure of the treated samples through X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and elemental analyses (EA). Results show that melam can stably exist up to 600 °C at 5 GPa. XRD and FTIR analyses reveal that residual melamine can be pyrolyzed into melam as temperature increases from 400 °C to 600 °C at a high pressure, suggesting that melam may be purified through high-pressure pyrolysis. Further melam polymerization at a higher pressure is a promising strategy for the preparation of s-triazine-based carbon nitride precursors used for bulk carbon nitride synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app