Add like
Add dislike
Add to saved papers

Utilizing a Spiro Core with Acridine- and Phenothiazine-Based New Hole Transporting Materials for Highly Efficient Green Phosphorescent Organic Light-Emitting Diodes.

Two new hole transporting materials, 2,7-bis(9,9-diphenylacridin-10(9 H )-yl)-9,9' spirobi[fluorene] (SP1) and 2,7-di(10 H -phenothiazin-10-yl)-9,9'-spirobi[fluorene] (SP2), were designed and synthesized by using the Buchwald-Hartwig coupling reaction with a high yield percentage of over 84%. Both of the materials exhibited high glass transition temperatures of over 150 °C. In order to understand the device performances, we have fabricated green phosphorescent organic light-emitting diodes (PhOLEDs) with SP1 and SP2 as hole transporting materials. Both of the materials revealed improved device properties, in particular, the SP2-based device showed excellent power (34.47 lm/W) and current (38.41 cd/A) efficiencies when compare with the 4,4'-bis( N -phenyl-1-naphthylamino)biphenyl (NPB)-based reference device (30.33 lm/W and 32.83 cd/A). The external quantum efficiency (EQE) of SP2 was 13.43%, which was higher than SP1 (13.27%) and the reference material (11.45%) with a similar device structure. The SP2 hole transporting material provides an effective charge transporting path from anode to emission layer, which is explained by the device efficiencies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app