Add like
Add dislike
Add to saved papers

Performance and mechanism of fluoride adsorption from groundwater by lanthanum-modified pomelo peel biochar.

To obtain an economical and effective adsorbent for fluoride removal, lanthanum-loaded pomelo peel biochar (PPBC-La) was synthesized using a facile approach. The batch adsorption experiments were investigated to determine adsorbent performance. The PPBC-La and its pristine biochar (PPBC) were characterized by scanning electronic microscopy (SEM), zeta potential, Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) methods. Experimental results showed that the adsorption data were described well by the pseudo-second-order kinetic and Freundlich isotherm models. The maximum fluoride adsorption capacity for PPBC-La was found to be 19.86 mg/g at 25 °C and pH 6.5. The PPBC-La worked well at pH 2.4-9.6 and carried positive charge at pH < 5.8. The presence of SO4 2- , Cl- , and NO3 - had a slight effect on fluoride uptake except HCO3 - and PO4 3- . The real groundwater study testified that 9.8 mg/L of fluoride was removed effectively at 1.0 g/L of dosage and pH 5.2. The regeneration results revealed that the PPBC-La had a good reusability. According to FTIR, XPS analysis and the anion exchange experiment, anions (NO3 - and OH- ) exchange with fluoride ions was mainly responsible for fluoride adsorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app