Add like
Add dislike
Add to saved papers

Integration of stationary wavelet transform on a dynamic partial reconfiguration for recognition of pre-ictal gamma oscillations.

Heliyon 2018 Februrary
To define the neural networks responsible of an epileptic seizure, it is useful to perform advanced signal processing techniques. In this context, electrophysiological signals present three types of waves: oscillations, spikes, and a mixture of both. Recent studies show that spikes and oscillations should be separated properly in order to define the accurate neural connectivity during the pre-ictal, seizure and inter-ictal states. Retrieving oscillatory activity is a sensitive task due to the frequency overlap between oscillations and transient activities. Advanced filtering techniques have been proposed to ensure a good separation between oscillations and spikes. It would be interesting to apply them in real time for instantaneous monitoring, seizure warning or neurofeedback systems. This requires improving execution time. This constraint can be overcome using embedded systems that combine hardware and software in an optimized architecture. We propose here to implement a stationary wavelet transform (SWT) as an adaptive filtering technique retaining only pre-ictal gamma oscillations, as validated in previous work, on a partial dynamic configuration. Then, the same architecture is used with further modifications to integrate spatio temporal mapping for an early recognition of seizure build-up. Data that contains transient, pre-ictal gamma oscillations and a seizure was simulated. the method on real intracerebral signals was also tested. The SWT was integrated on an embedded architecture. This architecture permits a spatio temporal mapping to detect the accurate time and localization of seizure build-up, while reducing computation time by a factor of around 40. Embedded systems are a promising venue for real-time applications in clinical systems for epilepsy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app