Add like
Add dislike
Add to saved papers

HCN channels contribute to the sensitivity of intravenous anesthetics in developmental mice.

Oncotarget 2018 Februrary 28
It is widely accepted that the induction dose of anesthetics is higher in infants than in adults, although the relevant molecular mechanism remains elusive. We previously showed neuronal hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to hypnotic actions of propofol and ketamine. Interestingly, the expression of HCN channels in neocortex significantly changes during postnatal periods. Thus, we postulated that changes in HCN channels expression might contribute to sensitivity to intravenous anesthetics. Here we showed the EC50 for propofol- and ketamine-induced loss-of-righting reflex (LORR) was significantly lower for P35 than for P14 mice. Cerebrospinal fluid concentrations of propofol and ketamine were significantly higher in P14 mice than in P35 mice, with similar propofol- and ketamine-induced anesthesia at the LORR EC50 . Western blotting indicated that the expression of HCN channels in neocortex changed significantly from P14 to P35 mice. In addition, the amplitude of HCN currents in the neocortical layer 5 pyramidal neurons and the inhibition of propofol and ketamine on HCN currents dramatically increased with development. Logistic regression analysis indicated that the changes of HCN channels were correlated with the age-related differences of propofol- and ketamine-induced anesthesia. These data reveal that the change of HCN channels expression with postnatal development may contribute to sensitivity to the hypnotic actions of propofol and ketamine in mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app