Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

How to Achieve Reversible Electrowetting on Superhydrophobic Surfaces.

Collapse (Cassie to Wenzel) wetting transitions impede the electrostatically induced reversible modification of wettability on superhydrophobic surfaces, unless a strong external actuation (e.g., substrate heating) is applied. Here we show that collapse transitions can be prevented (the droplet remains suspended on the solid roughness protrusions) when the electrostatic force, responsible for the wetting modification, is smoothly distributed along the droplet surface. The above argument is initially established theoretically and then verified experimentally.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app