Add like
Add dislike
Add to saved papers

Effects of Protein-Induced Local Bending and Sequence Dependence on the Configurations of Supercoiled DNA Minicircles.

The statistical mechanics of a short circularized DNA molecule, a DNA minicircle, with a prescribed linking number depends heavily on the mechanical and geometrical properties of the DNA, which are known to be functions of the sequence. A description of a general numerical scheme used for the performed advanced simulation is presented with examples that reveal the effects of sequence dependence and local deformations, caused by protein binding, on the configurations in a canonical ensemble of a supercoiled minicircle. Using a realistic course grain model in which the sequence-dependent elasticity, the intramolecular electrostatic interactions, and the impenetrability of the DNA molecule are taken into account, the bifurcation of equilibria of supercoiled minicircle DNA with the induced bending as a parameter is shown. The unique Monte Carlo scheme for constrained DNA molecules was utilized in order to calculate site-to-site distance probabilities for each pair of sites in the molecule. The simulated examples show not only that the sequence alone can play a significant role in bringing two remote sites to a contact but also the possible existence of several competing regions of contact. The results suggest that the local deformation caused by protein binding can yield a global configurational change, dominated by slithering motion, which brings two (originally) remote sites to close proximity, and that the nature of such effect is related to the sequence architecture.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app