Add like
Add dislike
Add to saved papers

Signal amplification strategy for biomarkers: Structural origins of epitaxial-growth twinned nanocrystals and D-π-A type polymers.

The combination of nanoparticles and biomarkers yields functional nanostructured biointerface, which is playing a notable role in biotechnology development. Due to the 5-fold twined structure in the Au-Pt star-shaped decahedra not only allowed it to act as efficient scaffold for immobilization of antibody, but it also exhibits superior electrocatalytic activity toward H2 O2 reduction, the nanocrystal as the efficient signal transduction label is first employed to construct an electrochemical immunosensor. Donor-π-Acceptor (D-π-A) linking fashion generates a dipolar push-pull system and assures superior intramolecular charge transfer. It is considered as a suitable π-conjugated backbone for conducting polymer on biointerface application. Under a D-π-A architecture which imidazole as the π-bridge and amino phenyl/phenyl groups as peripheral electron-donating/withdrawing functional groups, 4-(2,4,5-triphenyl-1H-imidazol-1-yl) aniline (TPIDA) is designed and synthesized for good biocompatibility and high conductivity. In this proposal, we attempt to integrate the above-mentioned two features from nanobiotechnology and organic bioelectronics. Then, a novel nonenzymatic sandwich-type immunosensor is performed by Au-Pt core-shell with surface-engineered twinning as a label and π-conjugated D-π-A polymers as the signal amplification platform. Human IgG (HIgG) as the model target protein can be detected with a wide linear range from 0.1 pg mL-1 to 100 ng mL-1 . The detection limit is down to 0.06 pg mL-1 (S/N = 3). Moreover, as a practical application, the prepared biosensor is used to monitor HIgG level in human serum with desirable results obtained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app