Add like
Add dislike
Add to saved papers

Resonant photoluminescence studies of carrier localisation in c-plane InGaN/GaN quantum well structures.

In this paper we report on changes in the form of the low temperature (12 K) photoluminescence spectra of an InGaN/GaN quantum well structure as a function of excitation photon energy. As the photon energy is progressively reduced we observe at a critical energy a change in the form of the spectra from one which is determined by the occupation of the complete distribution of hole localisation centres to one which is determined by the resonant excitation of specific localisation sites. This change is governed by an effective mobility edge whereby the photo-excited holes remain localised at their initial energy and are prevented from scattering to other localisation sites. This assignment is confirmed by the results of atomistic tight binding calculations which show that the wave function overlap of the lowest lying localised holes with other hole states is low compared with the overlap of higher lying hole states with other higher lying hole states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app