Add like
Add dislike
Add to saved papers

Characterisation of the absorption, distribution, metabolism, excretion and mass balance of doravirine, a non-nucleoside reverse transcriptase inhibitor in humans.

Absorption, distribution, metabolism and elimination of doravirine (MK-1439), a novel non-nucleoside reverse transcriptase inhibitor, were investigated. Two clinical trials were conducted in healthy subjects: an oral single dose [14  C]doravirine (350 mg, ∼200 µCi) trial (n = 6) and an intravenous (IV) single-dose doravirine (100 µg) trial (n = 12). In vitro metabolism, protein binding, apparent permeability and P-glycoprotein (P-gp) transport studies were conducted to complement the clinical trials. Following oral [14  C]doravirine administration, all of the administered dose was recovered. The absorbed dose was eliminated primarily via metabolism. An oxidative metabolite (M9) was the predominant metabolite in excreta and was the primary circulating metabolite (12.9% of circulating radioactivity). Following IV administration, doravirine clearance and volume of distribution were 3.73 L/h (95% confidence intervals (CI) 3.09, 4.49) and 60.5 L (95% CI 53.7, 68.4), respectively. In vitro, doravirine is not highly bound to plasma proteins (unbound fraction 0.24) and has good passive permeability. The metabolite M9 was generated by cytochrome P450 3A (CYP3A)4/5-mediated oxidation. Doravirine was a P-gp substrate but P-gp efflux is not expected to play a significant role in limiting doravirine absorption or to be involved in the elimination of doravirine. In conclusion, doravirine is a low clearance drug, primarily eliminated by CYP3A-mediated metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app