Add like
Add dislike
Add to saved papers

Computational study of radial particle migration and stresslet distributions in particle-laden turbulent pipe flow.

Particle-laden turbulent flows occur in a variety of industrial applications as well as in naturally occurring flows. While the numerical simulation of such flows has seen significant advances in recent years, it still remains a challenging problem. Many studies investigated the rheology of dense suspensions in laminar flows as well as the dynamics of point-particles in turbulence. Here we employ a fully-resolved numerical simulation based on a lattice Boltzmann scheme, to investigate turbulent flow with large neutrally buoyant particles in a pipe flow at low Reynolds number and in dilute regimes. The energy input is kept fixed resulting in a Reynolds number based on the friction velocity around 250. Two different particle radii were used giving a particle-pipe diameter ratio of 0.05 and 0.075. The number of particles is kept constant resulting in a volume fraction of 0.54% and 1.83%, respectively. We investigated Eulerian and Lagrangian statistics along with the stresslet exerted by the fluid on the spherical particles. It was observed that the high particle-to-fluid slip velocity close to the wall corresponds locally to events of high energy dissipation, which are not present in the single-phase flow. The migration of particles from the inner to the outer region of the pipe, the dependence of the stresslet on the particle radial positions and a proxy for the fragmentation rate of the particles computed using the stresslet have been investigated.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app