Add like
Add dislike
Add to saved papers

A compact skyrmionic leaky-integrate-fire spiking neuron device.

Nanoscale 2018 March 30
Neuromorphic computing, which relies on a combination of a large number of neurons massively interconnected by an even larger number of synapses, has been actively studied for its characteristics such as energy efficiency, intelligence, and adaptability. To date, while the development of artificial synapses has shown great progress with the introduction of emerging nanoelectronic devices, e.g., memristive devices, the implementation of artificial neurons, however, depends mostly on semiconductor-based circuits via integrating many transistors, sacrificing energy efficiency and integration density. Here, we present a novel compact neuron device that exploits the current-driven magnetic skyrmion dynamics in a wedge-shaped nanotrack. Under the coaction of the exciting current pulse and the repulsive force exerted by the nanotrack edges, the dynamic behavior of the proposed skyrmionic artificial neuron device is in analogy to the leaky-integrate-fire (LIF) spiking function of a biological neuron. The tunable temporary location of the skyrmion in our artificial neuron behaves like the analog membrane potential of a biological neuron. The neuronal dynamics and the related physical interpretations of the proposed skyrmionic neuron device are carefully investigated via micromagnetic and theoretical methods. Such a compact artificial neuron enables energy-efficient and high-density implementation of neuromorphic computing hardware.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app