Add like
Add dislike
Add to saved papers

Spray-Processed Composites with High Conductivity and Elasticity.

Highly conductive elastic composites were constructed using multistep solution-based fabrication methods that included the deposition of a nonwoven polymer fiber mat through solution blow spinning and nanoparticle nucleation. High nanoparticle loading was achieved by introducing silver nanoparticles into the fiber spinning solution. The presence of the silver nanoparticles facilitates improved uptake of silver nanoparticle precursor in subsequent processing steps. The precursor is used to generate a second nanoparticle population, leading to high loading and conductivity. Establishing high nanoparticle loading in a microfibrous block copolymer network generated deformable composites that can sustain electrical conductivities reaching 9000 S/cm under 100% tensile strain. These conductive elastic fabrics can retain at least 70% of their initial electrical conductivity after being stretched to 100% strain and released for 500 cycles. This composite material system has the potential to be implemented in wearable electronics and robotic systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app