Add like
Add dislike
Add to saved papers

Uniaxial Strain-Controlled Ferroelastic Domain Evolution in BiFeO 3 .

We investigate the effect of variable uniaxial tensile strain on the evolution of 71° ferroelastic domains in (001)-oriented epitaxial BiFeO3 (BFO) thin films using piezoresponse force microscopy (PFM). For this purpose, a newly designed bending stage has been employed, which allows tensile bending as wells as in situ PFM characterization. In situ PFM imaging reveals polarization-strain correlations at the nanoscale. Specifically, ferroelastic domains with in-plane polarization along the direction of applied tensile strain expand, whereas the adjoining domains with orthogonal in-plane polarization contract. The switching is mediated by significant domain wall roughening and opposite displacement of the successive walls. Further, the domains with long-range order are more susceptible to an applied external mechanical stimulus compared to the domains, which exhibit short-range periodicity. In addition, the imprint state of film reverses direction under applied tensile strain. Finally, the strain-induced changes in the domain structure and wall motion are fully reversible and revert to their as-grown state upon release of the applied stress. The strain-induced non-180° polarization rotation constitutes a route to control connected functionalities, such as magnetism, via coupled in-plane rotation of the magnetic plane in multiferroic BFO thin films.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app