Add like
Add dislike
Add to saved papers

Differences in kinematics and energy cost between front crawl and backstroke below the anaerobic threshold.

PURPOSE: The purpose of this study was to determine kinematic and energetic differences between front crawl and backstroke performed at the same aerobic speeds.

METHODS: Ten male competitive swimmers performed front crawl and backstroke at a pre-determined sub-anaerobic threshold speed to assess energy cost (through oxygen uptake measurement) and kinematics (using three-dimensional videography to determine stroke frequency and length, intra-cycle velocity fluctuation, three-dimensional wrist and ankle speeds, and vertical and lateral ankle range of motion). For detailed kinematic analysis, resultant displacement, the duration, and three-dimensional speed of the wrist during the entry, pull, push, and release phases were also investigated.

RESULTS: There were no differences in stroke frequency/length and intra-cycle velocity fluctuation between the swimming techniques, however, swimmers had lower energy cost in front crawl than in backstroke (0.77 ± 0.08 vs 0.91 ± 0.12 kJ m-1 , p < 0.01). Slower three-dimensional wrist and ankle speeds under the water (1.29 ± 0.10 vs 1.55 ± 0.10 and 0.80 ± 0.16 vs 0.97 ± 0.13 m s-1 , both p < 0.01) and smaller ankle vertical range of motion (0.36 ± 0.06 vs 0.47 ± 0.07 m, p < 0.01) in front crawl than in backstroke were also observed, which indirectly suggested higher propulsive efficiency in front crawl.

CONCLUSION: Front crawl is less costly than backstroke, and limbs motion in front crawl is more effective than in backstroke.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app