Add like
Add dislike
Add to saved papers

TiO 2 nanoparticles induce omphalocele in chicken embryo by disrupting Wnt signaling pathway.

Scientific Reports 2018 March 20
Titanium dioxide nanoparticles (TiO2 NPs) are among abundantly used metal oxide NPs but their interactions with biomolecules and subsequent embryonic toxicity in higher vertebrates is not extensively reported. Physicochemical interactions of TiO2 NPs with egg albumen reveals that lower doses of TiO2 NPs (10 and 25 µg/ml) accounted for higher friccohesity and activation energy but an increment in molecular radii was recorded at higher doses (50 and 100 µg/ml). FTIR analysis revealed conformational changes in secondary structure of egg albumen as a result of electrostratic interactions between egg albumen and TiO2 NPs. The morphometric data of chicken embryo recorded a reduction at all the doses of TiO2 NPs, but toxicity and developmental deformity (omphalocele and flexed limbs) were recorded at lower doses only. Inductively coupled plasma optical emission spectrometry (ICP-OES) confirmed presence of Ti in chicken embryos. mRNA levels of genes involved in canonical and non-canonical Wnt signaling were lowered following TiO2 NPs treatment resulting in free radical mediated disruption of lateral plate mesoderm and somite myogenesis. Conformational changes in egg albumen and subsequent developmental deformity in chicken embryo following TiO2 NPs treatment warrants detailed studies of NP toxicity at lower doses prior to their biomedical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app