Add like
Add dislike
Add to saved papers

Efficient and synergistic removal of tetracycline and Cu(II) using novel magnetic multi-amine resins.

Scientific Reports 2018 March 20
A series of magnetic multi-amine resins (MMARs, named E1D9-E9D1) was proposed for the removal of tetracycline (TC) and Cu(II) in sole and binary solutions. Results showed that the N content of the resins increased sharply from 1.7% to 15.49%, and the BET surface areas decreased from 1433.4 m2 /g to 8.9 m2 /g with methyl acrylate ratio increasing from E1D9 to E9D1. Their adsorption capacities for TC and Cu(II) could reach 0.243 and 0.453 mmol/g, respectively. The adsorption isotherms of TC onto MMARs transformed from heterogeneous adsorption to monolayer-type adsorption with DVB monomer ratio in resin matrix decrease, suggesting the dominant physical adsorption between TC and benzene rings. TC adsorption capacity onto E9D1 was higher than that onto E7D3 when the equilibrium concentration of TC exceeded 0.043 mmol/L because the electrostatic interaction between negatively charged groups of TC and protonated amines of adsorbents could compensate for the capacity loss resulting from BET surface area decrease. In the binary system, the electrostatic interaction between negatively charged TC-Cu(II) complex and protonated amines of adsorbents was responsible for the synergistic adsorption onto E7D3 and E9D1. The XPS spectra of magnetic resins before and after adsorption were characterized to prove the probable adsorption mechanisms. This work provides alternative adsorbent for the efficient treatment of multiple pollution with different concentrations of organic micropollutants and heavy metal ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app