JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Multiplexed Optical Imaging of Energy Substrates Reveals That Left Ventricular Hypertrophy Is Associated With Brown Adipose Tissue Activation.

BACKGROUND: Substrate utilization in tissues with high energetic requirements could play an important role in cardiometabolic disease. Current techniques to assess energetics are limited by high cost, low throughput, and the inability to resolve multiple readouts simultaneously. Consequently, we aimed to develop a multiplexed optical imaging platform to simultaneously assess energetics in multiple organs in a high throughput fashion.

METHODS AND RESULTS: The detection of 18F-Fluordeoxyglucose uptake via Cerenkov luminescence and free fatty acid uptake with a fluorescent C16 free fatty acid was tested. Simultaneous uptake of these agents was measured in the myocardium, brown/white adipose tissue, and skeletal muscle in mice with/without thoracic aortic banding. Within 5 weeks of thoracic aortic banding, mice developed left ventricular hypertrophy and brown adipose tissue activation with upregulation of β3 AR (β3 adrenergic receptors) and increased natriuretic peptide receptor ratio. Imaging of brown adipose tissue 15 weeks post thoracic aortic banding revealed an increase in glucose ( P <0.01) and free fatty acid ( P <0.001) uptake versus controls and an increase in uncoupling protein-1 ( P <0.01). Similar but less robust changes were seen in skeletal muscle, while substrate uptake in white adipose tissue remained unchanged. Myocardial glucose uptake was increased post-thoracic aortic banding but free fatty acid uptake trended to decrease.

CONCLUSIONS: A multiplexed optical imaging technique is presented that allows substrate uptake to be simultaneously quantified in multiple tissues in a high throughput manner. The activation of brown adipose tissue occurs early in the onset of left ventricular hypertrophy, which produces tissue-specific changes in substrate uptake that may play a role in the systemic response to cardiac pressure overload.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app